Metode Statistika I » Ukuran Penyebaran Data › Arti dan Kegunaan Koefisien Variasi Koefisien Variasi Koefisien variasi coefficient of variation merupakan perbandingan rasio antara standar deviasi dengan nilai rata-rata. Koefisien variasi biasa dinyatakan dengan persentase. Oleh Tju Ji Long Statistisi Salah satu ukuran keragaman atau variasi dari suatu kelompok data dikenal dengan koefisien variasi coefficient of variation, CV. Koefisien variasi merupakan perbandingan antara standar deviasi \\ dengan nilai rata-rata \\bar{x}\. Koefisien variasi biasa dinyatakan dengan persentase. Formula untuk ukuran koefisien variasi CV dapat dinyatakan sebagai berikut \[ CV = \frac{\sigma}{\bar{x}} \] Ukuran koefisien variasi mempunyai kelebihan dibandingkan dengan ukuran keragaman lainnya range, varians, standar deviasi terutama untuk keterbandingan. Kita tahu bahwa apabila dua variabel mempunyai varians yang berbeda, kita tidak dapat dengan serta merta mengatakan bahwa variabel yang satu lebih beragam atau memiliki dispersi lebih besar dibanding variabel yang lain. Dengan kata lain, meskipun standar deviasi atau ragam dari kedua variabel sama-sama mengukur penyebaran dalam masing-masing variabel, tetapi keduanya tidak dapat dibandingkan satu sama lainnya. Hal ini disebabkan karena adanya perbedaan unit/satuan dari variabel tersebut. Sebagai contoh, perhatikan data fiktif antara harga dua barang A dan B di 6 daerah berikut Dari data di atas terlihat bahwa harga barang B diperoleh dari harga barang A yang dikalikan dengan 100. Selain itu, terlihat bahwa harga barang A memiliki varians yang jauh lebih kecil dibandingkan varians pada harga barang B. Lantas, apakah kita bisa menyatakan bahwa harga barang A lebih homogen terhadap harga barang B? Kesimpulan ini tentu saja keliru, karena pada dasarnya keragaman kedua harga barang tersebut tidak dapat diperbandingkan karena perbedaan unit/satuan yang digunakan. Jadi, dalam kasus ini kita tidak bisa membandingkan kedua harga tersebut mana yang lebih beragam atau lebih homogen antara satu dengan yang lainnya. Ceritanya akan berbeda jika ukuran keragaman yang digunakan adalah koefisien variasi. Dengan menggunakan koefisien variasi, maka keragaman kedua variabel dapat diperbandingkan satu sama lain karena pengaruh unit/satuan dari variabel tersebut telah ditiadakan. Kita tahu bahwa standar deviasi dan mean dari suatu variabel dinyatakan dalam satuan yang sama, sehingga dengan mengambil rasio dari keduanya mengakibatkan hilangnya unit/satuan tersebut dan dihasilkan ukuran baru yang disebut koefisien variasi CV. Rasio CV ini kemudian dapat dibandingkan dengan rasio lainnya, di mana variabel dengan CV yang lebih besar menandakan datanya lebih bervariasi, lebih menyebar, atau lebih beragam dibandingkan variabel dengan CV yang lebih kecil.
Koefisien Variasi adalah perbandingan Simpangan Baku Standar Deviasi dengan Rata-rata Hitung dan dinyatakan dalam bentuk persentase. Kegunaan koefisien variasi adalah untuk melihat sebaran/distribusi data dari rata-rata hitungnya. Semakin kecil koefisien variasi maka data semakin homogen seragam, sedangkan semakin besar koefisien variasi maka data semakin heterogen bervariasi. Rumus Koefisien Variasi \[\boxed{kv = \frac{s}{\bar{x}} \times 100\%}\] Keterangan \kv =\ koefisien variasi \s =\ standar deviasi \\bar{x} =\ rata-rata hitung Contoh Soal Rata-rata nilai ujian statistika mahasiswa jurusan ekonomi adalah 75 dengan standar deviasi 9. Berapakah koefisien variasi nilai ujian statistika mahasiswa tersebut. Penyelesaian Diketahui \\bar{x} = 75\ dan \s = 9,\ maka koefisien variasinya adalah \[\begin{aligned} kv &= \frac{s}{\bar{x}} \times 100\%\\ &= \frac{9}{75} \times 100\%\\ &= 12\% \end{aligned}\] Koefisien variasi nilai ujian statistika mahasiswa jurusan ekonomi adalah \12\%.\ Hasil ujicoba tes IQ kepada beberapa orang mahasiswa adalah sebagai berikut \[135, 110, 140, 100, 115, 110, 130\] Hitunglah koefisien variasi hasil tes IQ mahasiswa tersebut! Penyelesaian Nilai yang dibutuhkan untuk menghitung koefisien variasi adalah rata-rata hitung \\bar{x}\ dan standar deviasi/simpangan baku \s.\ Langkah pertama yang harus kita lakukan adalah menghitung rata-rata hitung \\bar{x}\ terlebih dahulu. \[\begin{aligned} \bar{x} &= \frac{1}{n} \sum_{i=1}^{n} x_i\\ &= \frac{1}{7} 135+ 110+ 140+ 100+ 115+ 110+ 130\\ &= \frac{1}{7} 840\\ &= 120 \end{aligned}\] Selanjutnya hitung standar deviasi dengan memanfaatkan tabel berikut. \x_i\ \x_i - \bar{x}\ \x_i - \bar{x}^2\ 135 15 225 110 -10 100 140 20 400 100 -20 400 115 -5 25 110 -10 100 130 10 100 \\displaystyle \sum_{i=1}^{7} x_i - \bar{x}^2 =\ 1350 Nilai standar deviasi dihitung menggunakan rumus \[\begin{aligned} s &= \sqrt{\frac{1}{n-1} \sum_{i=1}^n x_i - \bar{x}^2}\\ &= \sqrt{\frac{1}{7-1} 1350}\\ &= \sqrt{225}\\ &= 15 \end{aligned}\] Selanjutnya koefisien korelasi dihitung dengan rumus \[\begin{aligned} kv &= \frac{s}{\bar{x}} \times 100\%\\ &= \frac{15}{120} \times 100\%\\ &= 12{,}5\% \end{aligned}\] Koefisien variasi hasil tes IQ mahasiswa adalah \12{,}5.\Jadibukan merupakan rumus pasti. Karena data sampel pada contoh tersebut berada di cell B5 sampai B11 maka kita masukkan (B5:B11). Keterangan : a. STDEV mengasumsikan bahwa argumen adalah contoh dari populasi. Jika data mewakili seluruh populasi, untuk menghitung deviasi standar menggunakan STDEVP. b. Standar deviasi dihitung memakai metode Related PapersStatistika adalah suatu ilmu yang mempelajari cara pengumpulan, pengolahan, penyajian dan analisis data serta cara pengambilan kesimpulan secara umum berdasarkan hasil penelitian yang tidak menyeluruh. Di sini, saya akan menyampaikan apa saja yang telah saya pelajari di Perguruan Tinggi Bina Insani. Dimulai dari yang perhitungan dalam statistika yang paling dasar. - evidrjtnKebutuhan air bersih bagi penduduk Surabaya merupakan kebutuhan vital yang tidak bisa disepelekan baik secara kuantitas maupun kualitas. Dalam upaya mengontrol dan memantau kualitas air di perairan Kota Surabaya, khususnya daerah sekitar Kali Surabaya, perlu adanya sistem pengelolaan dan pemantauan kualitas air pada Kali Surabaya. Peramalan terhadap data time series salah satu parameter kualitas air, yaitu BOD, menggunakan jaringan syaraf tiruan dapat digunakan sebagai model untuk menganalisis kecenderungan sistem perairan Kali Surabaya. Model jaringan syaraf yang dapat digunakan dalam peramalan data time series adalah model yang memiliki sifat supervised learning diantaranya adalah Jaringan Syaraf Radial Basis Function. Dengan mempertimbangkan kemungkinan terjadinya kesalahan paralaks dalam pengukuran serta terbatasnya data dan karakteristik data yang berbeda, aplikasi teori fuzzy digunakan sebagai unsupervised learning dalam model. Model yang terbentuk adalah model jaringan syaraf Fuzzy Radial Basis Function yang bersifat unsupervised-supervised learning dan terbukti dapat mengembangkan kualitas hasil peramalan nilai BOD pada Kali Surabaya. Tingkat keberhasilan pengembangan kualitas hasil peramalan tersebut terlihat dari nilai error yang kecil dengan mengunakan model jaringan syaraf Fuzzy Radial Basis Function. Hasil peramalan nilai BOD pada Kali Surabaya juga dapat digunakan sebagai acuan dalam upaya pengelolaan dan pemantauan kualitas air Kali Prestasi Akademik IPK sampai saat ini masih menjadi salah satu tolak ukur mutu lulusan yang dihasilkan oleh suatu Perguruan Tinggi. Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi IPK mahasiswa jika dilihat dari kualitas input mahasiswa baru yang ada di Jurusan Pendidikan Matematika IAIN STS Jambi. Beberapa parameter yang diasumsikan akan mempengaruhi kualitas input mahasiswa adalah jenis kelamin, asal sekolah, status sekolah, dan jalur masuk. Data diperoleh dari dokumentasi Jurusan Pendidikan Matematika. Sampel dalam penelitian ini adalah 131 orang mahasiswa angkatan 2012. Peubah bebas yang digunakan dalam penelitian ini terdiri dari peubah kuantitatif dan kualitatif. Peubah kualitatif diubah menjadi kuantitatif menggunakan peubah boneka dummy dan selanjutnya dianalisis dengan regresi dummy. Hasilnya, diperoleh hanya satu factor yang signifikan mempengaruhi IPK mahasiswa yaitu jalur masuk. Dilihat dari perolehan IPK mahasiswa berdasarkan jalur masuk terlihat bahwa nilai IPK tertinggi diperoleh IPK mahasiswa dari jalur PMBK dan nilai IPK terendah berasal dari mahasiswa dari jalur regular. Kata Kunci Indeks Prestasi Akademik, Regresi Dummy
5,787 ViewsSinopsisContents1 Sinopsis2 Jumlah Keseluruhan / SUM3 Rata-Rata Aritmatik atau Rata-Rata Hitung4 Modus5 Median6 Range7 Variance8 Standar Deviasi9 Koefisien Variasi10 Data yang dibakukan data standarisasi11 Ukuran Kemiringan Distribusi Data skewness12 Ukuran Keruncingan kurtosis13 Package psych14 Package Pastecs Sebagai pembahasan dasar-dasar statistika, kalian akan belajar yang dimulai dari mengukur gejala pusat seperti sum, mean, median, variance, standar deviasi dan yang lainnya. Hal ini berguna sebagai deskripsi awal mengenai datasetnya sehingga mampu menggunakan tools analisis yang lainnya. Pembahasan ini secara garis besar dibagi menjadi 2 yaitu Diberikan pengertian dan rumus matematika setiap operasi statistik dasar dengan R Serta membuat function dalam kode R. Menggunakan package untuk melakukan operasi statistika. Oiya jangan lupa kalian belajar plot grafik dan cara install package di R Sebagian besar dataset yang digunakan menggunakan format CSV yang diload kedalam Data Frame ataupun dalam bentuk vector untuk mempermudah dalam pengolahan selanjutnya. Sebagai contoh terdapat dataset berikut. Berdasarkan tabel diatas akan dihitung sum, mean, modus, dan medianya yang disajikan dalam bentuk variabel vector di R nilai_siswa rangenilai$A [1] 6 9 > rangenilai$B [1] 5 9 > rangenilai$C [1] 4 10 Variance Variance berhubungan erat dengan standard deviation, yaitu digunakan untuk mengukur dan mengetahui seberapa jauh bagaimana penyebaran data dalam distribusi data. Dengan kata lain digunakan untuk mengukur variabilitas data Dalam bahasa awam variance adalah untuk mengetahui tingkat keragaman dalam data. Semakin tinggi nilai variance berarti semakin bervariasi dan beragam suatu data. Untuk menghitung variance, harus diketahui terlebih dahulu mean-nya, kemudian menjumlahkan kuadrat selisih dari tiap-tiap data terhadap mean tersebut. Secara numeric, variance merupakan rata-rata dari kuadrat selisih data terhadap mean. Variance dalam hal ini variance untuk sampel dilambangkan dengan . Berikut rumus untuk menghitung nilai variance. Perintah yang digunakan yaitu varnilai_siswa hasil Standar Deviasi Standard deviation diperoleh dari akar dari variance dan digunakan untuk mengukur penyebaran data. Standar deviasi merupakan akar kuadrat positif variance. Nilai dari standar deviasi dapat diinterpretasi sebagai nilai yang menunjukkan seberapa dekat nilai-nilai data menyebar atau berkumpul di sekitar rata-ratanya. Standar deviasi merupakan salah satu dari ukuran pencaran yang paling sering digunakan. Perintah yang digunakan yaitu sdnilai_siswa hasil Koefisien Variasi Kalian bisa lihat dataset berikut yang mempunyai range nilai yang berbeda, untuk kelas A mempunyai range nilai 0 sd. 10; untuk kelas B mempunyai range nilai 0 100; sedangkan untuk kelas C mempunyai range nilai 0 1. Misalkan untuk menggambarkan heterogen mana antara kelas A, B, dan C Untuk itu dapat digunakan koefisien variasi untuk membandingkan tingkat variasi atau heterogen di antara dua atau lebih kelompok ketika suatu satuan/range nya berbeda-beda dengan rumus Kode kv kvnilai$A [1] > kvnilai$B [1] > kvnilai$C [1] Semakin tinggi nilai koefisen variasi maka makin heterogen. Data yang dibakukan data standarisasi Variabel yang mengukur deviasi dari rerata dalam unit disebut dengan variabel yang dibakukan. Rumus umumnya yaitu Perhatikan nilai Z baku diatas harus mempunyai nilai rerata 1 dan standar deviasi 0. Berdasarkan uraian tersebut, data dalam bentuk standar atau baku sangat berguna untuk tujuan perbandingan distribusi dari beberapa kelompok data. Untuk kode dalam R kalian bisa menggunakan sebuah library saja atau menggunakan function berikut zdata 0 atau positif, maka kurva cenderung condong ke kanan kurva positif. Jika nilai kemiringan mendekati 0 atau 0, maka kurva cenderung simetris. Oiya untuk perhitungan skewness harus menggunakan frekuensi ya! Misalkan kita punya data berikut dalam bentuk data frame dari sebuah file data No A 1 1 1 2 2 1 3 3 2 4 4 2 5 5 2 6 6 2 7 7 2 8 8 2 9 9 2 10 10 3 11 11 3 12 12 3 13 13 3 14 14 3 15 15 4 16 16 4 17 17 4 18 18 4 19 19 5 20 20 5 21 21 5 22 22 6 23 23 6 24 24 7 Kode yang digunakan untuk menampilkan dan menghitung skew skew nilai No A B C 1 1 1 1 1 2 2 1 1 1 3 3 1 1 2 4 4 1 2 2 5 5 2 2 2 6 6 2 2 2 7 7 2 2 2 8 8 2 2 2 9 9 3 2 2 10 10 3 3 2 11 11 3 3 3 12 12 3 3 3 Mempunyai grafik distribusi dan nilai kurtosis sebagai berikut freq nilai No A B C 1 1 1 1 1 2 2 1 1 1 3 3 1 1 2 4 4 1 2 2 5 5 2 2 2 6 6 2 2 2 7 7 2 2 2 8 8 2 2 2 9 9 3 2 2 10 10 3 3 2 11 11 3 3 3 12 12 3 3 3 dengan memanggil perintah describe akan didapatkan informasi yang lengkap mengenai data tersebut describenilai hasil vars n mean sd median trimmed mad min max range skew kurtosis se No 1 12 1 12 11 0 A 2 12 1 3 2 0 B 3 12 1 3 2 0 C 4 12 1 3 2 0 Fungsi describe dalam hal ini digunakan untuk menentukan banyaknya data n, rata-rata aritmatik mean, standar deviasi sd, median, minimum min, maksimum max, range, kemiringan skew, dan kurtosis. Tapi ada yang kurang sih yaitu nilai variance, sum, dan standard error mean belum dan koefisien korelasi maka kalian perlu install package pastecs Package Pastecs Seperti biasa lakukan dulu install package dengan perintah berikut lakukan loading package dengan perintah librarypastecs Perintah yang digunakan yaitu hasilnya No A B C min max range sum median mean var
Data Data adalah "hasil pencatatan peneliti, baik yang berupa fakta ataupun angka". Dari sumber SK Menteri P dan K No. 0259/U/1977 tanggal 11 Juli 1977, disebutkan bahwa data adalah "segala fakta dan angka yang dapat dijadikan bahan untuk menyusun suatu informasi, sedangkan informasi adalah hasil pengolahan data yang dipakai untuk suatu
Darihasil perhitungan bahwa data distribusi normal dan berasal dari data yang homogen. Uji hipotesis dengan menggunakan uji-t. Dari hasil pengujian hipotesis didapat t hitung = 6,05 ternyata harga tersebur lebih besar dari pada tabel t α = 1,68 dengan taraf signifikan 0,05 (5%).
Adabebarapa macam ukuran penyebaran data, namun yang umum digunakan adalah standar deviasi. Macam-macam ukuran penyimpangan data adalah : Jangkauan ( range) Simpangan rata-rata ( mean deviation) Simpangan baku ( standard deviation) Varians ( variance) Koefisien variasi ( Coefficient of variation) 1. Jangkauan (range)
.